

TensorGrip FS600 Canister Spray Adhesive QUIN GLOBAL ASIA PACIFIC

Version No: 3.3

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 4

Issue Date: **27/10/2022** Print Date: **05/09/2023** L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier			
Product name TensorGrip FS600 Canister Spray Adhesive			
Synonyms	Not Available		
Proper shipping name	CHEMICAL UNDER PRESSURE, FLAMMABLE, TOXIC, N.O.S. (contains methylene chloride)		
Other means of identification	Not Available		

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Adhesive

Details of the manufacturer or supplier of the safety data sheet

Registered company name	QUIN GLOBAL ASIA PACIFIC		
Address	63 Hincksman Street Queanbeyan, NSW 2620 Australia		
Telephone	S1 2 6175 0574		
Fax	Not Available		
Website	www.quinglobal.com		
Email	sales@quinglobal.com.au		

Emergency telephone number

Association / Organisation	CHEMWATCH EMERGENCY RESPONSE (24/7)	
Emergency telephone numbers	+61 1800 951 288	
Other emergency telephone numbers	+61 3 9573 3188	

Once connected and if the message is not in your preferred language then please dial ${\bf 01}$

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable
Classification ^[1]	Serious Eye Damage/Eye Irritation Category 2A, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Gases Under Pressure (Liquefied Gas), Carcinogenicity Category 2, Flammable Gases Category 1A
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word Danger

Hazard statement(s)

H319	Causes serious eye irritation.
AUH044	Risk of explosion if heated under confinement.

Version No: **3.3** Page **2** of **20** Issue Date: **27/10/2022**

TensorGrip FS600 Canister Spray Adhesive

Print Date: 05/09/2023

H302	Harmful if swallowed.	
H315	Causes skin irritation.	
H280	Contains gas under pressure; may explode if heated.	
H351	Suspected of causing cancer.	
H220	Extremely flammable gas.	

Precautionary statement(s) Prevention

P201 Obtain special instructions before use.			
P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.			
P280 Wear protective gloves, protective clothing, eye protection and face protection.			
P264	Wash all exposed external body areas thoroughly after handling.		
P270	Do not eat, drink or smoke when using this product.		

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/ attention.			
P377	Leaking gas fire: Do not extinguish, unless leak can be stopped safely.			
P305+P351+P338	F IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P337+P313	eye irritation persists: Get medical advice/attention.			
P381	n case of leakage, eliminate all ignition sources.			
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.			
P302+P352	IF ON SKIN: Wash with plenty of water.			
P330	Rinse mouth.			
P332+P313	If skin irritation occurs: Get medical advice/attention.			
P362+P364	Take off contaminated clothing and wash it before reuse.			

Precautionary statement(s) Storage

	• • • • • • • • • • • • • • • • • • • •	
P405 Store locked up.		Store locked up.
P410+P403 Protect from sunlight. Store in a well-ventilated place.		Protect from sunlight. Store in a well-ventilated place.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name			
75-09-2	40-60	methylene chloride			
7732-18-5	<1	<u>water</u>			
1309-48-4.	<1	magnesium oxide			
98-54-4	<5	p-tert-butylphenol			
68476-85-7.	30-50	LPG (liquefied petroleum gas)			
Legend:	Classified by Chernwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available				

SECTION 4 First aid measures

Description of first aid measures

- If product comes in contact with eyes remove the patient from gas source or contaminated area.
- ▶ Take the patient to the nearest eye wash, shower or other source of clean water.
- ▶ Open the eyelid(s) wide to allow the material to evaporate.
- Gently rinse the affected eye(s) with clean, cool water for at least 15 minutes. Have the patient lie or sit down and tilt the head back. Hold the eyelid(s) open and pour water slowly over the eyeball(s) at the inner corners, letting the water run out of the outer corners.
- The patient may be in great pain and wish to keep the eyes closed. It is important that the material is rinsed from the eyes to prevent further damage.

Eye Contact

- Ensure that the patient looks up, and side to side as the eye is rinsed in order to better reach all parts of the eye(s)
 Transport to hospital or doctor.
- February Even when no pain persists and vision is good, a doctor should examine the eye as delayed damage may occur.
- If the patient cannot tolerate light, protect the eyes with a clean, loosely tied bandage.
 Ensure verbal communication and physical contact with the patient.

DO NOT allow the patient to rub the eyes

 $\ensuremath{\text{DO NOT}}$ allow the patient to tightly shut the eyes

 $\mbox{\bf DO}\mbox{\bf NOT}$ introduce oil or ointment into the eye(s) without medical advice

DO NOT use hot or tepid water.

Issue Date: 27/10/2022 Version No: 3.3 Page 3 of 20 Print Date: 05/09/2023

TensorGrip FS600 Canister Spray Adhesive

If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). ▶ Seek medical attention in event of irritation. In case of cold burns (frost-bite): Move casualty into warmth before thawing the affected part; if feet are affected carry if possible Bathe the affected area immediately in luke-warm water (not more than 35 deg C) for 10 to 15 minutes, immersing if possible and without **Skin Contact** rubbina DO NOT apply hot water or radiant heat. Apply a clean, dry, light dressing of 'fluffed-up' dry gauze bandage If a limb is involved, raise and support this to reduce swelling If an adult is involved and where intense pain occurs provide pain killers such as paracetomol Transport to hospital, or doctor ▶ Subsequent blackening of the exposed tissue indicates potential of necrosis, which may require amputation. Following exposure to gas, remove the patient from the gas source or contaminated area. NOTE: Personal Protective Equipment (PPE), including positive pressure self-contained breathing apparatus may be required to assure the safety of the rescuer. Prostheses such as false teeth, which may block the airway, should be removed, where possible, prior to initiating first aid procedures. If the patient is not breathing spontaneously, administer rescue breathing. If the patient does not have a pulse, administer CPR. Inhalation If medical oxygen and appropriately trained personnel are available, administer 100% oxygen. Summon an emergency ambulance. If an ambulance is not available, contact a physician, hospital, or Poison Control Centre for further ▶ Keep the patient warm, comfortable and at rest while awaiting medical care. MONITOR THE BREATHING AND PULSE, CONTINUOUSLY. Administer rescue breathing (preferably with a demand-valve resuscitator, bag-valve mask-device, or pocket mask as trained) or CPR if Not considered a normal route of entry. Avoid giving milk or oils. Ingestion

Indication of any immediate medical attention and special treatment needed

Avoid giving alcohol.

for intoxication due to Freons/ Halons;

A: Emergency and Supportive Measures

- Maintain an open airway and assist ventilation if necessary
- Treat coma and arrhythmias if they occur. Avoid (adrenaline) epinephrine or other sympathomimetic amines that may precipitate ventricular arrhythmias. Tachyarrhythmias caused by increased myocardial sensitisation may be treated with propranolol, 1-2 mg IV or esmolol 25-100 microgm/kg/min IV.
- ▶ Monitor the ECG for 4-6 hours
- B: Specific drugs and antidotes:
- ► There is no specific antidote

C: Decontamination

- Inhalation; remove victim from exposure, and give supplemental oxygen if available.
- Ingestion; (a) Prehospital: Administer activated charcoal, if available. DO NOT induce vomiting because of rapid absorption and the risk of abrupt onset CNS depression. (b) Hospital: Administer activated charcoal, although the efficacy of charcoal is unknown. Perform gastric lavage only if the ingestion was very large and recent (less than 30 minutes) D: Enhanced elimination:
- ▶ There is no documented efficacy for diuresis, haemodialysis, haemoperfusion, or repeat-dose charcoal.

POISONING and DRUG OVERDOSE, Californian Poison Control System Ed. Kent R Olson; 3rd Edition

- Do not administer sympathomimetic drugs unless absolutely necessary as material may increase myocardial irritability.
- No specific antidote
- ▶ Because rapid absorption may occur through lungs if aspirated and cause systematic effects, the decision of whether to induce vomiting or not should be made by an attending physician.
- If lavage is performed, suggest endotracheal and/or esophageal control.
- Danger from lung aspiration must be weighed against toxicity when considering emptying the stomach.
- ▶ Treatment based on judgment of the physician in response to reactions of the patient

For frost-bite caused by liquefied petroleum gas:

- If part has not thawed, place in warm water bath (41-46 C) for 15-20 minutes, until the skin turns pink or red.
- Analgesia may be necessary while thawing
- If there has been a massive exposure, the general body temperature must be depressed, and the patient must be immediately rewarmed by whole-body immersion, in a bath at the above temperature.
- Shock may occur during rewarming.
- Administer tetanus toxoid booster after hospitalization.
- Prophylactic antibiotics may be useful
- The patient may require anticoagulants and oxygen.

[Shell Australia 22/12/87]

For petroleum distillates

- · In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- · Positive pressure ventilation may be necessary.
- · Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- · After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- · Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators. For gas exposures:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema.

Version No: **3.3** Page **4** of **20** Issue Date: **27/10/2022**

TensorGrip FS600 Canister Spray Adhesive

Print Date: 05/09/2023

- ▶ Monitor and treat, where necessary, for shock.
- Anticipate seizures.

ADVANCED TREATMENT

▶ Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.

- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN A.C. and CURRANCE PL

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination).

For poisons (where specific treatment regime is absent):

BASIC TREATMENT

▶ Establish a patent airway with suction where necessary.

- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use
- Monitor and treat, where necessary, for arrhythmias.
- ▶ Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications
- Treat seizures with diazepam.
- ▶ Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 Firefighting measures

Extinguishing media

DO NOT EXTINGUISH BURNING GAS UNLESS LEAK CAN BE STOPPED SAFELY:

OTHERWISE: LEAVE GAS TO BURN.

FOR SMALL FIRE:

- ▶ Dry chemical, CO2 or water spray to extinguish gas (only if absolutely necessary and safe to do so).
- ► DO NOT use water jets.

FOR LARGE FIRE:

- Cool cylinder by direct flooding quantities of water onto upper surface until well after fire is out.
- DO NOT direct water at source of leak or venting safety devices as icing may occur.

Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

FOR FIRES INVOLVING MANY GAS CYLINDERS:

- To stop the flow of gas, specifically trained personnel may inert the atmosphere to reduce oxygen levels thus allowing the capping of leaking container(s).
- ▶ Reduce the rate of flow and inject an inert gas, if possible, before completely stopping the flow to prevent flashback.
- DO NOT extinguish the fire until the supply is shut off otherwise an explosive re-ignition may occur.
- If the fire is extinguished and the flow of gas continues, used increased ventilation to prevent build-up, of explosive atmosphere.
- Use non-sparking tools to close container valves.
- ▶ Be CAUTIOUS of a Boiling Liquid Evaporating Vapour Explosion, *BLEVE*, if fire is impinging on surrounding containers.
- ▶ Direct 2500 litre/min (500 gpm) water stream onto containers above liquid level with the assistance remote monitors

GENERAL

Fire Fighting

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Consider evacuation
- Fight fire from a safe distance, with adequate cover.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- ► DO NOT approach cylinders suspected to be hot
- Cool fire-exposed cylinders with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

FIRE FIGHTING PROCEDURES:

Version No: **3.3** Page **5** of **20** Issue Date: **27/10/2022**

TensorGrip FS600 Canister Spray Adhesive

Print Date: 05/09/2023

The only safe way to extinguish a flammable gas fire is to stop the flow of gas.

- If the flow cannot be stopped, allow the entire contents of the cylinder to burn while cooling the cylinder and surroundings with water from a suitable distance.
- Extinguishing the fire without stopping the gas flow may permit the formation of ignitable or explosive mixtures with air. These mixtures may propagate to a source of ignition.

SPECIAL HAZARDS

- F Excessive pressures may develop in a gas cylinder exposed in a fire; this may result in explosion.
- Cylinders with pressure relief devices may release their contents as a result of fire and the released gas may constitute a further source of hazard for the fire-fighter.
- Cylinders without pressure-relief valves have no provision for controlled release and are therefore more likely to explode if exposed to fire.

FIRE FIGHTING REQUIREMENTS:

The need for proximity, entry and flash-over protection and special protective clothing should be determined for each incident, by a competent fire-fighting safety professional.

- ► HIGHLY FLAMMABLE: will be easily ignited by heat, sparks or flames.
- Will form explosive mixtures with air
- Fire exposed containers may vent contents through pressure relief valves thereby increasing fire intensity and/ or vapour concentration.
- Vapours may travel to source of ignition and flash back
- ▶ Containers may explode when heated Ruptured cylinders may rocket
- Fire may produce irritating, poisonous or corrosive gases.
- Runoff may create fire or explosion hazard.
- May decompose explosively when heated or involved in fire.
- High concentration of gas may cause asphyxiation without warning.
- Contact with gas may cause burns, severe injury and/ or frostbite.

Combustion products include:

carbon monoxide (CO)

carbon dioxide (CO2)

hydrogen chloride

phosgene

metal oxides

other pyrolysis products typical of burning organic material.

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

Vented gas is more dense than air and may collect in pits, basements

HAZCHEM

2WE

SECTION 6 Accidental release measures

Fire/Explosion Hazard

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

- Avoid breathing vapour and any contact with liquid or gas. Protective equipment including respirator should be used.
- DO NOT enter confined spaces where gas may have accumulated.
- Shut off all sources of possible ignition and increase ventilation.
 Clear area of personnel.
- Minor Spills

Major Spills

- Stop leak only if safe to so do.
- Remove leaking cylinders to safe place. release pressure under safe controlled conditions by opening valve.
- Orientate cylinder so that the leak is gas, not liquid, to minimise rate of leakage
- ▶ Keep area clear of personnel until gas has dispersed.

Clear area of all unprotected personnel and move upwind.

- Alert Emergency Authority and advise them of the location and nature of hazard.
- May be violently or explosively reactive.
- Wear full body clothing with breathing apparatus.
 Prevent by any means available, spillage from entering drains and water-courses.
- Consider evacuation.
- ▶ Shut off all possible sources of ignition and increase ventilation.
- No smoking or naked lights within area.
- Use extreme caution to prevent violent reaction.
- Stop leak only if safe to so do.
- Water spray or fog may be used to disperse vapour.
 DO NOT enter confined space where gas may have collected.
- ► Keep area clear until gas has dispersed.
- ▶ Remove leaking cylinders to a safe place.
- ▶ Fit vent pipes. Release pressure under safe, controlled conditions
- Burn issuing gas at vent pipes.
- ▶ DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Version No: **3.3** Page **6** of **20** Issue Date: **27/10/2022**

TensorGrip FS600 Canister Spray Adhesive

Print Date: 05/09/2023

Precautions for safe handling

Safe handling

Natural gases contain a contaminant, radon-222, a naturally occurring radioactive gas. During subsequent processing, radon tends to concentrate in liquefied petroleum streams and in product streams having similar boiling points. Industry experience indicates that the commercial product may contain small amounts of radon-222 and its radioactive decay products (radon daughters). The actual concentration of radon-222 and radioactive daughters in process equipment (IE lines, filters, pumps and reactor units) may reach significant levels and produce potentially damaging levels of gamma radiation. A potential external radiation hazard exists at or near any pipe, valve or vessel containing a radon enriched stream or containing internal deposits of radioactive material. Field studies, however, have not shown that conditions exist that expose the worker to cumulative exposures in excess of general population limits. Equipment containing gamma-emitting decay products should be presumed to be internally contaminated with alpha-emitting decay products which may be hazardous if inhaled or ingested. During maintenance operations that require the opening of contaminated process equipment, the flow of gas should be stopped and a four hour delay enforced to allow gamma-radiation to drop to background levels. Protective equipment (including high efficiency particulate respirators (P3) suitable for radionucleotides or supplied air) should be worn by personnel entering a vessel or working on contaminated process equipment to prevent skin contamination or inhalation of any residue containing alpha-radiation. Airborne contamination may be minimised by handling scale and/or contaminated materials in a wet state. [TEXACO]

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- · Consider use in closed pressurised systems, fitted with temperature, pressure and safety relief valves which are vented for safe dispersal. Use only properly specified equipment which is suitable for this product, its supply pressure and temperature
- · The tubing network design connecting gas cylinders to the delivery system should include appropriate pressure indicators and vacuum or suction lines.
- · Fully-welded types of pressure gauges, where the bourdon tube sensing element is welded to the gauge body, are recommended.
- Before connecting gas cylinders, ensure manifold is mechanically secure and does not containing another gas. Before disconnecting gas cylinder, isolate supply line segment proximal to cylinder, remove trapped gas in supply line with aid of vacuum pump
- · When connecting or replacing cylinders take care to avoid airborne particulates violently ejected when system pressurises.

· Consider the use of doubly-contained piping; diaphragm or bellows sealed, soft seat valves; backflow prevention devices; flash arrestors; and flow monitoring or limiting devices. Gas cabinets, with appropriate exhaust treatment, are recommended, as is automatic monitoring of the secondary enclosures and work areas for release.

- · Use a pressure reducing regulator when connecting cylinder to lower pressure (<100 psig) piping or systems
- · Use a check valve or trap in the discharge line to prevent hazardous back-flow into the cylinder
- · Check regularly for spills or leaks. Keep valves tightly closed but do not apply extra leverage to hand wheels or cylinder keys.
- · Open valve slowly. If valve is resistant to opening then contact your supervisor
- · Valve protection caps must remain in place must remain in place unless container is secured with valve outlet piped to use point.
- · Never insert a pointed object (e.g hooks) into cylinder cap openings as a means to open cap or move cylinder. Such action can inadvertently turn the valve and gas a gas leak. Use an adjustable strap instead of wrench to free an over-tight or rusted cap.
- · A bubble of gas may buildup behind the outlet dust cap during transportation, after prolonged storage, due to defective cylinder valve or if a dust cap is inserted without adequate evacuation of gas from the line. When loosening dust cap, preferably stand cylinder in a suitable enclosure and take cap off slowly. Never face the dust cap directly when removing it; point cap away from any personnel or any object that may pose a hazard. under negative pressure (relative to atmospheric gas)
- · Suck back of water into the container must be prevented. Do not allow backfeed into the container.
- \cdot Do NOT drag, slide or roll cylinders use a suitable hand truck for cylinder movement
- · Test for leakage with brush and detergent NEVER use a naked flame
- \cdot Do NOT heat cylinder by any means to increase the discharge rate of product from cylinder.
- Leaking gland nuts may be tightened if necessary.
- · If a cylinder valve will not close completely, remove the cylinder to a well ventilated location (e.g. outside) and, when empty, tag as FAULTY and return to supplier.

Cylinders containing flammable gases should be stored away from other combustible materials. Alternatively a fire-resistant partition may be

- $\boldsymbol{\cdot}$ Obtain a work permit before attempting any repairs.
- DO NOT attempt repair work on lines, vessels under pressure.
- · Atmospheres must be tested and O.K. before work resumes after leakage.
- Avoid generation of static electricity. Earth all lines and equipment.
- ► DO NOT transfer gas from one cylinder to another.
- F Cylinders should be stored in a purpose-built compound with good ventilation, preferably in the open.
- Such compounds should be sited and built in accordance with statutory requirements.
- The storage compound should be kept clear and access restricted to authorised personnel only.
- Cylinders stored in the open should be protected against rust and extremes of weather.
 Cylinders in storage should be properly secured to prevent toppling or rolling.
- Cylinder valves should be closed when not in use.
 - Where cylinders are fitted with valve protection this should be in place and properly secured.
- Gas cylinders should be segregated according to the requirements of the Dangerous Goods Act(s).
- used.
- Check storage areas for flammable or hazardous concentrations of gases prior to entry.
- Preferably store full and empty cylinders separately.
 Full cylinders should be arranged so that the oldest stock is used first.
- Cylinders in storage should be checked periodically for general condition and leakage.
- Protect cylinders against physical damage. Move and store cylinders correctly as instructed for their manual handling.

NOTE: A 'G' size cylinder is usually too heavy for an inexperienced operator to raise or lower.

Conditions for safe storage, including any incompatibilities

Other information

Suitable container

- ► DO NOT use aluminium or galvanised containers
- Cylinder:
- Ensure the use of equipment rated for cylinder pressure.
- ► Ensure the use of compatible materials of construction.
- Valve protection cap to be in place until cylinder is secured, connected.
- Cylinder must be properly secured either in use or in storage.
- Cylinder valve must be closed when not in use or when empty.
- Segregate full from empty cylinders.

WARNING: Suckback into cylinder may result in rupture. Use back-flow preventive device in piping.

Version No: **3.3** Page **7** of **20** Issue Date: **27/10/2022**

TensorGrip FS600 Canister Spray Adhesive

Print Date: 05/09/2023

Methylene chloride

- ▶ is a combustible liquid under certain circumstances even though there is no measurable flash point and it is difficult to ignite
- Fits is flammable in ambient air in the range 12-23%; increased oxygen content can greatly enhance fire and explosion potential
- b contact with hot surfaces and elevated temperatures can form fumes of hydrogen chloride and phosgene
- reacts violently with active metals, aluminium, lithium, methanol,, peroxydisulfuryl difluoride, potassium, potassium tert-butoxide, sodium
- ▶ forms explosive mixtures with nitric acid
- is incompatible with strong oxidisers, strong caustics, alkaline earths and alkali metals
- attacks some plastics, coatings and rubber
- may generate electrostatic charge due to low conductivity

Low molecular weight alkanes:

- May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxygenyl tetrafluoroborate.
- ▶ May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat.
- ▶ Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens
- may generate electrostatic charges, due to low conductivity, on flow or agitation.
- Avoid flame and ignition sources

Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition. Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes. Interaction between chlorine and ethane over activated carbon at 350 deg C has caused explosions, but added carbon dioxide reduces the risk. The violent interaction of liquid chlorine injected into ethane at 80 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploded when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C. Alkanes will react with steam in the presence of a nickel catalyst to give hydrogen.

Propane:

- reacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc.
- liquid attacks some plastics, rubber and coatings
- may accumulate static charges which may ignite its vapours
- Segregate from alcohol, water.
- Avoid reaction with oxidising agents
- Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

Storage incompatibility

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	methylene chloride	Methylene chloride	50 ppm / 174 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	magnesium oxide	Magnesium oxide (fume)	10 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	LPG (liquefied petroleum gas)	LPG (liquified petroleum gas)	1000 ppm / 1800 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
methylene chloride	Not Available	Not Available	Not Available
magnesium oxide	30 mg/m3	120 mg/m3	730 mg/m3
p-tert-butylphenol	1.5 mg/m3	40 mg/m3	240 mg/m3
LPG (liquefied petroleum gas)	65,000 ppm	2.30E+05 ppm	4.00E+05 ppm

Ingredient	Original IDLH	Revised IDLH
methylene chloride	2,300 ppm	Not Available
water	Not Available	Not Available
magnesium oxide	750 mg/m3	Not Available
p-tert-butylphenol	Not Available	Not Available
LPG (liquefied petroleum gas)	2,000 ppm	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
p-tert-butylphenol	E	≤ 0.01 mg/m³
Notes:	Occupational exposure banding is a process of assigning chemicals into s adverse health outcomes associated with exposure. The output of this pro range of exposure concentrations that are expected to protect worker hea	cess is an occupational exposure band (OEB), which corresponds to a

MATERIAL DATA

IFRA Prohibited Fragrance Substance

The International Fragrance Association (IFRA) Standards form the basis for the globally accepted and recognized risk management system for the safe use of fragrance ingredients and are part of the IFRA Code of Practice. This is the self-regulating system of the industry, based on risk assessments carried out by an independent Expert Panel For liquefied petroleum gases (LPG):

TLV TWA: 1000 ppm, 1800 mg/m3 (as LPG)

ES TWA: 1000 ppm, 1800 mg/m3 (as LPG)

OES TWA: 1000 ppm, 1750 mg/m3; STEL: 1250 ppm, 2180 mg/m3 (as LPG)

IDLH Level: 2000 ppm (lower explosive limit)

No chronic systemic effects have been reported from occupational exposure to LPG. The TLV-TWA is based on good hygiene practices and is thought to minimise the risk of fire or

Version No: **3.3** Page **8** of **20** Issue Date: **27/10/2022**

TensorGrip FS600 Canister Spray Adhesive

Print Date: 05/09/2023

explosion

Odour Safety Factor(OSF)
OSF=0.16 (hydrocarbon propellant)

For methylene chloride

Odour Threshold Value: 158 ppm (detection), 227 ppm (recognition)

NOTE: Detector tubes for methylene chloride, measuring in excess of 25 ppm are commercially available. Long-term measurements (4 hrs) may be conducted to detect concentrations exceeding 13 ppm.

Exposure at or below the recommended TLV-TWA (and in the absence of occupational exposure to carbon monoxide) is thought to minimise the potential for liver injury and to provide protection against the possible weak carcinogenic effects which have been demonstrated in laboratory rats and mice. Enhancement of tumours of the lung, liver, salivary glands and mammary tissue in rodent studies has lead NIOSH to recommend a more conservative outcome. The ACGIH however concludes that in the absence of documentation of health-related injuries at higher exposures after a long history of methylene chloride use and a number of epidemiologic studies, the recommended TLV-TWA provides an adequate margin of safety.

Concentration effects:

Concentration Clinical effects >300 ppm Sweet odour

500-1000 ppm (1-2 h) Unpleasant odour, slight anaesthetic effects, headache, light-headedness, eye irritation and elevated COHb concentration

2300 ppm (5 min.) Odour strong, intensely irritating: dizziness

7200 ppm (8-16 min) Paraesthesia, tachycardia >50000 ppm Immediately life-threatening

These exposure guidelines have been derived from a screening level of risk assessment and should not be construed as unequivocally safe limits. ORGS represent an 8-hour time-weighted average unless specified otherwise.

CR = Cancer Risk/10000; UF = Uncertainty factor:

TLV believed to be adequate to protect reproductive health:

LOD: Limit of detection

Toxic endpoints have also been identified as:

D = Developmental; R = Reproductive; TC = Transplacental carcinogen Jankovic J., Drake F.: A Screening Method for Occupational Reproductive American Industrial Hygiene Association Journal 57: 641-649 (1996)

Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

ClassOSF Description

A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities

B 26-550 As 'A' for 50-90% of persons being distracted

C 1-26 As 'A' for less than 50% of persons being distracted

D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached

E <0.18 As 'D' for less than 10% of persons aware of being tested

May act as a simple asphyxiants; these are gases which, when present in high concentrations, reduce the oxygen content in air below that required to support breathing, consciousness and life; loss of consciousness, with death by suffocation may rapidly occur in an oxygen deficient atmosphere.

CARE: Most simple asphyxiants are odourless or possess low odour and there is no warning on entry into an oxygen deficient atmosphere. If there is any doubt, oxygen content can be checked simply and quickly. It may not be appropriate to only recommend an exposure standard for simple asphyxiants rather it is essential that sufficient oxygen be maintained. Air normally has 21 percent oxygen by volume, with 18 percent regarded as minimum under normal atmospheric pressure to maintain consciousness / life. At pressures significantly higher or lower than normal atmospheric pressure, expert guidance should be sought.

NOTE K: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.1%w/w 1,3-butadiene (EINECS No 203-450-8). - European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure

- F Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a 'glove-box'. Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

Appropriate engineering controls

Version No: 3.3 Page 9 of 20 Issue Date: 27/10/2022

TensorGrip FS600 Canister Spray Adhesive

Individual protection measures, such as personal protective equipment

Eye and face protection

- ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Full face shield may be required for supplementary but never for primary protection of eyes.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

See Hand protection below

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
- Hands/feet protection When handling sealed and suitably insulated cylinders wear cloth or leather gloves.

NOTE:

NOTE: Insulated gloves should be loose fitting so that may be removed quickly if liquid is spilled upon them. Insulated gloves are not made to permit hands to be placed in the liquid; they provide only short-term protection from accidental contact with the liquid.

Body protection

Other protection

See Other protection below

- Figure 1. Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent]
- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent]
- Ferring Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.
- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton.
- Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost.

BRETHERICK: Handbook of Reactive Chemical Hazards.

- Protective overalls, closely fitted at neck and wrist.
- Eve-wash unit.

IN CONFINED SPACES:

- Non-sparking protective boots
- Static-free clothing.
- ► Ensure availability of lifeline.

Staff should be trained in all aspects of rescue work.

Rescue gear: Two sets of SCBA breathing apparatus Rescue Harness, lines etc.

- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

Forsberg Clothing Performance Index'.

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

TensorGrip FS600 Canister Spray Adhesive

Material	СРІ
BUTYL	С
CPE	С
NATURAL RUBBER	С
NEOPRENE	С
PE/EVAL/PE	С
PVA	С
TEFLON	С
VITON	С
VITON/BUTYL	С

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AX-AUS	-	AX-PAPR-AUS / Class 1
up to 50 x ES	-	AX-AUS / Class 1	-
up to 100 x ES	-	AX-2	AX-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur $\label{eq:conditional} \mbox{dioxide}(SO2), \ G = \mbox{Agricultural chemicals}, \ K = \mbox{Ammonia}(\mbox{NH3}), \ \mbox{Hg} = \mbox{Mercury}, \ \mbox{NO} = \$ Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic

Print Date: 05/09/2023

Version No: 3.3 Issue Date: 27/10/2022 Page 10 of 20

Print Date: 05/09/2023 TensorGrip FS600 Canister Spray Adhesive

VITON/CHLOROBUTYL

С

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory: may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

compounds(below 65 degC)

- ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- ▶ Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used
- Positive pressure, full face, air-supplied breathing apparatus should be used for work in enclosed spaces if a leak is suspected or the primary containment is to be opened (e.g. for a cylinder change)
- Air-supplied breathing apparatus is required where release of gas from primary containment is either suspected or demonstrated.

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator	
up to 10	1000	AX-AUS / Class 1	-	
up to 50	1000	-	AX-AUS / Class 1	
up to 50	5000	Airline *	-	
up to 100	5000	-	AX-2	
up to 100	10000	-	AX-3	
100+		-	Airline**	

^{** -} Continuous-flow or positive pressure demand.

A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C)

VOC g/L

Not Available

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Not Available		
Physical state	Liquified Gas	Relative density (Water = 1)	0.838
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	-97	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	-40	Molecular weight (g/mol)	Not Available
Flash point (°C)	-104	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	46.86	Gas group	Not Available
Solubility in water	Partly miscible	pH as a solution (1%)	Not Available

SECTION 10 Stability and reactivity

Vapour density (Air = 1)

Reactivity

See section 7

2.93

Version No: **3.3** Page **11** of **20** Issue Date: **27/10/2022**

TensorGrip FS600 Canister Spray Adhesive

Chemical stability

Product is considered stable.
Hazardous polymerisation will not occur.
Presence of heat source
Presence of an ignition source

Presence of an ignition source

Conditions to avoid
See section 7

See section 7

See section 7

See section 7

SECTION 11 Toxicological information

products

Inhaled

See section 5

Information on toxicological effects

Hazardous decomposition

The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation, of the material, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Inhalation hazard is increased at higher temperatures.

Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

Symptoms of asphyxia (suffocation) may include headache, dizziness, shortness of breath, muscular weakness, drowsiness and ringing in the ears. If the asphyxia is allowed to progress, there may be nausea and vomiting, further physical weakness and unconsciousness and, finally, convulsions, coma and death. Significant concentrations of the non-toxic gas reduce the oxygen level in the air. As the amount of oxygen is reduced from 21 to 14 volume %, the pulse rate accelerates and the rate and volume of breathing increase. The ability to maintain attention and think clearly is diminished and muscular coordination is somewhat disturbed. As oxygen decreases from 14-10% judgement becomes faulty; severe injuries may cause no pain. Muscular exertion leads to rapid fatigue. Further reduction to 6% may produce nausea and vomiting and the ability to move may be lost. Permanent brain damage may result even after resuscitation at exposures to this lower oxygen level. Below 6%

breathing is in gasps and convulsions may occur. Inhalation of a mixture containing no oxygen may result in unconsciousness from the first breath and death will follow in a few minutes.

The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing.

Before starting consider control of exposure by mechanical ventilation.

Inhalation exposure may cause susceptible individuals to show change in heart beat rhythm i.e. cardiac arrhythmia. Exposures must be terminated.

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Acute intoxication by halogenated aliphatic hydrocarbons appears to take place over two stages. Signs of a reversible narcosis are evident in the first stage and in the second stage signs of injury to organs may become evident, a single organ alone is (almost) never involved.

Not normally a hazard due to physical form of product.

Considered an unlikely route of entry in commercial/industrial environments

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

The material may accentuate any pre-existing dermatitis condition

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Vapourising liquid causes rapid cooling and contact may cause cold burns, frostbite, even through normal gloves. Frozen skin tissues are painless and appear waxy and yellow. Signs and symptoms of frost-bite may include 'pins and needles', paleness followed by numbness, a hardening an stiffening of the skin, a progression of colour changes in the affected area, (first white, then mottled and blue and eventually black; on recovery, red, hot, painful and blistered).

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

Skin Contact

Ingestion

The material produces severe skin irritation; evidence exists, or practical experience predicts, that the material either:

- roduces severe inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant and severe inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.
- Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

NOTE: Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.

Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures..

Limited evidence or practical experience suggests, that the material may cause moderate eye irritation in a substantial number of individuals

Limited evidence or practical experience suggests, that the material may cause moderate eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged exposure may cause moderate inflammation (similar to windburn) characterised by a temporary redness of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Chronic

Strong evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure.

Print Date: 05/09/2023

Version No: **3.3** Page **12** of **20** Issue Date: **27/10/2022**

TensorGrip FS600 Canister Spray Adhesive

Print Date: 05/09/2023

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers. Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

On the basis of epidemiological data, the material is regarded as carcinogenic to humans. There is sufficient data to establish a causal

association between human exposure to the material and the development of cancer.

Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed.

Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by

Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests.

Exposure to the material may cause concerns for human fertility, generally on the basis that results in animal studies provide sufficient evidence to cause a strong suspicion of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Prolonged inhalation of high concentrations of magnesite (magnesium carbonate) dust caused pulmonary deposition and retention. Roasted magnesite (magnesium oxide) produced a greater degree of fibrosis than did crude magnesite. No cases of human systemic poisoning due to exposure to magnesite have been recorded. Pneumoconiosis was found in about 2% of workers exposed to high concentrations of dust from crude or roasted magnesite that also contained 1-3% silicon dioxide. Exposure periods ranged from 6-20 years. This condition occurred mainly in workers exposed to roasted (calcined) magnesite. The pneumoconiosis appeared to be 'benign' and was often associated with chronic bronchitis and lung emphysema.

In other reports the severity of the pneumoconiosis was associated with the crystalline silica content of the dust or in a case of magnesium carbonate used in insulating materials, the severity of the disease depended on the asbestos content.

Complaints of coughing are rare amongst magnesite workers, and more frequent among dianase and grog (crushed refractory materials) workers

Airborne dust concentrations were lowest in dianase facilities but crystalline silica was high. Chronic bronchitis then, appears to increase where concentrations of crystalline silica are highest

Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses.

Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding

Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties

Animal studies

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar

naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human. Principal route of occupational exposure to the gas is by inhalation.

TensorGrip FS600 Canister Spray Adhesive

TOXICITY	IRRITATION
Not Available	Not Available

methylene chloride

TOXICITY	IRRITATION
dermal (rat) LD50: >2000 mg/kg ^[2]	Eye(rabbit): 162 mg - moderate
Inhalation(Rat) LC50: 76 mg/L4h ^[2]	Eye(rabbit): 500 mg/24hr - mild
Oral (Rat) LD50: 1600 mg/kg ^[2]	Skin (rabbit): 100mg/24hr-moderate
	Skin (rabbit): 810 mg/24hr-SEVERE

water

TOXICITY	IRRITATION
Oral (Rat) LD50: >90000 mg/kg ^[2]	Not Available

Version No: 3.3 Page 13 of 20 Issue Date: 27/10/2022

	TensorGrip FS600 Canister S	Spray Adhesive	Print Date: 05/09/202	
	l			
	TOXICITY			
magnesium oxide	Not Available	Not Available		
	TOXICITY	-		
	Dermal (rabbit) LD50: 2288 mg/kg ^[2]	IRRITATION Separation Sepa		
p-tert-butylphenol	Oral (Rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 10 mg - SEVERE		
p tott Budy.priotic		tating) ^[1]		
		Skin (rabbit): 500 mg/4h - mild		
		Skin: adverse effect observed (irritating) ^[1]		
LPG (liquefied petroleum gas)	TOXICITY	IRRITATION		
Er o (ilquelleu petroleum gas)	Inhalation(Rat) LC50: 658 mg/l4h ^[2]		Not Available	
Legend:	Value obtained from Europe ECHA Registered Substate specified data extracted from RTECS - Register of Toxic		nanufacturer's SDS. Unless otherwise	
TensorGrip FS600 Canister Spray Adhesive	raised, generally, on the basis of	,	•	
METHYLENE CHLORIDE	conjunctivitis. The material may produce severe skin irritation after prol form of dermatitis is often characterised by skin redness	g to inflammation. Repeated or prolonged exp longed or repeated exposure, and may produc (erythema) thickening of the epidermis. pongy layer (spongiosis) and intracellular oede	ee a contact dermatitis (nonallergic). This	

WARNING: This substance has been classified by the IARC as Group 2A: Probably Carcinogenic to Humans.

for alkylphenolics category:

The alkylphenolics may be divided into three groups.

Group I: ortho-substituted mono-alkylphenols:

Group II para-substituted mono-alkylphenols

Group III: di- and tri-substituted mixed alkyl phenols

The subdivision of the category alkylphenols into ortho, para and the di/tri-substituted mixed members is supported by several published investigations. In assessing antimicrobial and antifouling activity of twenty-three alkylphenols, a significant difference was noted between para and ortho-substituted materials. In particular, biological activity was found to vary parabolically with increasing hydrophobicity of the para-substituent while introduction of a bulky substituent at the ortho-position resulted in a very significant decrease in antimicrobial, antifouling, and membrane-perturbation potency. Several alkylphenolic analogs of butylated hydroxytoluene (BHT) were examined for hepatotoxicity in mice depleted of hepatic glutathione. The structural requirement of both hepatic and pulmonary toxicity was a phenol ring having benzylic hydrogen atoms at the para position and an ortho-alkyl group(s) that moderately hinders the phenolic hydroxyl group. It is noteworthy that in this model, neither of the Group III members TTBP (2,4,6-tri-tert-butylphenol) nor 2,6-DTBP (2,6-di-tert-butylphenol) showed either hepatic or pulmonary toxicity. Lastly, important differences were observed in gene activation (recombinant yeast cell assay - Lac-Z reporter gene) between orthosubstituted and para-substituted alkylphenol

Acute toxicity: The acute (single-dose) toxicity of alkylphenols examined to date shows consistency, with LD50 values ranging from approximately 1000 mg/kg to over 2000 mg/kg. These data demonstrate a very low level of acute systemic toxicity and do not suggest any unique structural specificity, despite the general tendency for the chemicals to be, at least, irritants to skin

Repeat dose toxicity: The available studies for members drawn from the three groups range from 28-day and 90-day general toxicity studies, through developmental toxicity and reproductive/developmental screening, to multigeneration reproductive studies are available for some

For the overall category of alkylphenols, the dosage at which the relatively mild general toxicity appears tends only to fall below 100 mg/kg/day with extended treatment, with an overall NOAEL for the category of approximately 20 mg/kg/day. No unusual and no apparent structurally unique

P-TERT-BUTYLPHENOL

Repeat dose studies on OTBP (o-tert-butylphenol; Group I) and PTBP (p-tert-butylphenol; Group II) suggest the forestomach to be the main organ affected. OTBP also appears to have a mild (though statistically significant) protective effect against benzo[a]pyrene induced forestomach tumors. Long-term treatment with high dietary dose levels of PTBP caused hyperplastic changes in the forestomach epithelium of rats and hamsters, a likely consequence of the irritancy of the material. The relevance of this for human hazard is doubtful, particularly since there is no analogous structure in humans to the forestomach of rodents.

There was no evidence of an effect on reproductive function at dosages up to 150 mg/kg. One reproductive screening study reported increased 'breeding loss and also reduced pup weight gain and survival in early lactation at 750 mg/kg/day. It is reasonable to assume that these effects were secondary to "severe toxic symptoms" reported in the dams at this dosage. Other than an indication of a very mildly oestrogenic effect of PNP (p-nonylphenol; Group II) at a high dose levels (200-300 mg/kg/day) no effect on development was seen in a multigeneration study. By means of the classification method of Verhaar * all the alkylphenols would be classified as Type 2 compounds (polar narcotics). Narcosis, a non-specific mode of toxicity is caused by disruption (perturbation) of the cell membrane. The ability to induce narcosis is dependent on the hydrophobicity of the substance with biochemical activation or reaction involved. Such narcotic effects are also referred to as minimum or base-line toxicity. Polar narcotics such as the category phenols are usually characterised by having hydrogen bond donor activity and are thought to act by a similar mechanism to the inert, narcotic compounds but exhibit above base-line toxicity. In fact, a large number of alkylphenols have been evaluated as intravenous anesthetic agents. While the structure-activity relationships were found to be complex, the anesthetic potency and kinetics appeared to be a function of both the lipophilic character and the degree of steric hindrance exerted by ortho substituents. Less steric hindrance resulted in lower potency, while greater crowding led to complete loss of anesthetic activity and greater lipophilicity resulted in slower kinetics. These data support the notion that the alkylphenols behave as polar narcotics. In addition, the anaesthetic activity/potency differences seen with varying structure and placement of substituents strongly supports the division of alkylphenols category into the ortho, para, and di/trisubstituted groups (i.e. Group I, II and III, respectively).

Genotoxicity: It reasonable to consider the mutagenic potential of all the alkylphenols together because only functional group is the phenolic, which is not a structural alert for mutagenicity. The data support this, since the results of genotoxicity testing are uniformly negative for all category substances examined

* Verhaar, H.J.M. van Leeuwen, C.J. and Hermens, J.L.M., Classifying Environmental Pollutants, 1: Structure-Activity Relationships for Prediction

Version No: **3.3** Page **14** of **20** Issue Date: **27/10/2022**

TensorGrip FS600 Canister Spray Adhesive

Print Date: 05/09/2023

of Aquatic Toxicity, Chemosphere (25), pp 471 - 491 (1992).

For p-tert-butylphenol

Acute toxicity: Acute toxicity of p-t-butylphenol is low via any administration routes. This chemical is considered as an irritant to the skin, eyes and respiratory tract. The possibility of skin sensitisation in humans still remains because of some positive results in human patch tests, despite negative results in animal experiments (OECD TG 406). The depigmentation was observed on the skin of various animals and humans exposed to this chemical. This change was likely induced by exposure to this chemical not only via direct contact but also via inhalation or ingestion route. Repeat dose and developmental/reproductive toxicity In the OECD combined repeat dose and reproductive/ developmental screening toxicity test (OECD TG 422) of rats by gavage at doses of 20, 60 and 200 mg/kg/day for 46 days, this chemical showed neither systemic toxicity nor reproductive toxicity even at the highest dose of 200 mg/kg/day. Although a noisy respiratory sound was induced in a few females at 200 mg/kg/day, it was considered due to irritation of the respiratory tract caused by this chemical. In a dose-finding study (14 days), this changed to respiratory difficulty, especially at 1,000 mg/kg/day. In other studies by the longer and higher exposure in diet (approx. 1 g/kg b.w./day, for 20 or 51 weeks), forestomach hyperplasia was induced.

Genotoxicity: This chemical showed clear negative results in gene mutation tests. However, one chromosomal aberration study indicated structural chromosome aberration and polyploidy with metabolic activation in CHL/IU cells (OECD TG 473) although other studies in rat lymphocytes (OECD TG 473) and in rat liver epithelial-type cells resulted in negative. Therefore, the possibility of *in vivo* genotoxicity still remains.

Carcinogenicity: There was no sufficient carcinogenicity study and no evidence of carcinogenesis in manufacturing workers, however, a two-stage carcinogenicity study indicated this chemical has promoting activity of forestomach carcinogenesis (papilloma and squamous carcinoma) in rats treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Furthermore, since the structural related chemical, BHA, (2(3)-tert-butyl-methoxylphenol) is a clear carcinogen, a carcinogenic potential of this chemical could not be ruled out.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

for Petroleum Hydrocarbon Gases:

In many cases, there is more than one potentially toxic constituent in a refinery gas. In those cases, the constituent that is most toxic for a particular endpoint in an individual refinery stream is used to characterize the endpoint hazard for that stream. The hazard potential for each mammalian endpoint for each of the petroleum hydrocarbon gases is dependent upon each petroleum hydrocarbon gas constituent endpoint toxicity values (LC50, LOAEL, etc.) and the relative concentration of the constituent present in that gas. It should also be noted that for an individual petroleum hydrocarbon gas, the constituent characterizing toxicity may be different for different mammalian endpoints, again, being dependent upon the concentration of the different constituents in each, distinct petroleum hydrocarbon gas.

All Hydrocarbon Gases Category members contain primarily hydrocarbons (i.e., alkanes and alkenes) and occasionally asphyxiant gases like hydrogen. The inorganic components of the petroleum hydrocarbon gases are less toxic than the C1 - C4 and C5 - C6 hydrocarbon components to both mammalian and aquatic organisms. Unlike other petroleum product categories (e.g. gasoline, diesel fuel, lubricating oils, etc.), the inorganic and hydrocarbon constituents of hydrocarbon gases can be evaluated for hazard individually to then predict the screening level hazard of the Category members

Acute toxicity: No acute toxicity LC50 values have been derived for the C1 -C4 and C5- C6 hydrocarbon (HC) fractions because no mortality was observed at the highest exposure levels tested (~ 5 mg/l) for these petroleum hydrocarbon gas constituents. The order of acute toxicity of petroleum hydrocarbon gas constituents from most to least toxic is:

C5-C6 HCs (LC50 > 1063 ppm) > C1-C4 HCs (LC50 > 10,000 ppm) > benzene (LC50 = 13,700 ppm) > butadiene (LC50 = 129,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen).

Repeat dose toxicity: With the exception of the asphyxiant gases, repeated dose toxicity has been observed in individual selected petroleum hydrocarbon gas constituents. Based upon LOAEL values, the order of order of repeated-dose toxicity of these constituents from most toxic to the least toxic is:

Benzene (LOAEL .>=10 ppm) >C1-C4 HCs (LOAEL = 5,000 ppm; assumed to be 100% 2-butene) > C5-C6 HCs (LOAEL = 6,625 ppm) > butadiene (LOAEL = 8,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen).

Genotoxicity:

In vitro: The majority of the Petroleum Hydrocarbon Gases Category components are negative for *in vitro* genotoxicity. The exceptions are: benzene and 1.3-butadiene, which are genotoxic in bacterial and mammalian *in vitro* test systems.

In vivo: The majority of the Petroleum Hydrocarbon Gases Category components are negative for *in vivo* genotoxicity. The exceptions are benzene and 1,3-butadiene, which are genotoxic in *in vivo* test systems

Developmental toxicity: Developmental effects were induced by two of the petroleum hydrocarbon gas constituents, benzene and the C5 -C6 hydrocarbon fraction. No developmental toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for developmental toxicity. Based on LOAEL and NOAEL values, the order of acute toxicity of these constituents from most to least toxic is:

Benzene (LOAEL = 20 ppm) > butadiene (NOAEL .>=1,000 ppm) > C5-C6 HCs (LOAEL = 3,463 ppm) > C1-C4 HCs (NOAEL >=5,000 ppm; assumed to be 100% 2-butene) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen).

Reproductive toxicity: Reproductive effects were induced by only two petroleum hydrocarbon gas constituents, benzene and isobutane (a constituent of the the C1-C4 hydrocarbon fraction). No reproductive toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for reproductive toxicity. Based on LOAEL and NOAEL values, the order of reproductive toxicity of these constituents from most to least toxic is:

Benzene (LOAEL = 300 ppm) > butadiene (NOAEL .>=6,000 ppm) > C5-C6 HCs (NOAEL .>=6,521 ppm) > C1-C4 HCs (LOAEL = 9,000 ppm; assumed to be 100% isobutane) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen)

TensorGrip FS600 Canister Spray Adhesive & MAGNESIUM OXIDE

LPG (LIQUEFIED PETROLEUM

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

TensorGrip FS600 Canister Spray Adhesive & METHYLENE CHLORIDE

WATER & LPG (LIQUEFIED PETROLEUM GAS)

No significant acute toxicological data identified in literature search.

MAGNESIUM OXIDE & P-TERT-BUTYLPHENOL

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

 Version No: 3.3
 Page 15 of 20
 Issue Date: 27/10/2022

 Print Date: 05/09/2023
 Print Date: 05/09/2023

TensorGrip FS600 Canister Spray Adhesive

Acute Toxicity	✓	Carcinogenicity	✓
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

🗶 – Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

ensorGrip FS600 Canister	Endpoint Test Duration (hr)			Species	Value		Source			
Spray Adhesive	Not Available	Not Available		Not Available		Not Available		Not Avai	lable	
	Endpoint	Tes	st Duration (hr)	Speci	Species		Value		Source	
	BCF	1008h		Fish	Fish		2-5.4		7	
	EC50	EC50 72h		Algae	or other aquatic plants	3	202-286m	g/l	4	
methylene chloride	EC50	48h	1	Crusta	acea		108.5mg/l		1	
	EC50	96h	1	Algae	or other aquatic plants	3	0.98mg/l		4	
	LC50	96h	1	Fish			2-3.3mg/l		4	
	EC50(ECx)	96h	1	Algae	or other aquatic plants	3	0.98mg/l		4	
	Endpoint	Test Duration (hr)			Species Value		Source		ırce	
water	Not Available	t Available Not Available			Not Available Not Avail		lable Not Available			
magnesium oxide	Endpoint		Test Duration (hr)		Species	Value		Source		
-	Not Available		Not Available		Not Available Not Available Not Ava			lable		
	Endpoint	Te	est Duration (hr)	Spe	cies		Value		Source	
	EC50	72	2h	Alga	Algae or other aquatic plants		~2.4mg/l		2	
p-tert-butylphenol	EC50	48	 Bh	Crustacea		3.4-4.5mg/l		4		
	NOEC(ECx)	30	072h	Fish		0.01mg/L		2		
	LC50	96	5h	Fish		>1mg/l 2		2		
(lianasia da astrolonia ands)	Endpoint		Test Duration (hr)		Species Va		Value		Source	
(liquefied petroleum gas)	Not Available		Not Available		Not Available Not Avail			nilable Not Available		

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials. Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes;
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and

Version No: **3.3** Page **16** of **20** Issue Date: **27/10/2022**

TensorGrip FS600 Canister Spray Adhesive

Print Date: 05/09/2023

(7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil

Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L was determined. The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

For methylene chloride:

log Kow: 1.25 log Koc: 1.68 log Kom: 1.44

Henry's atm m3 /mol: 2.68E-03

BCF: 5

Environmental fate

Methylene chloride is a volatile liquid, and tends to volatilise to the atmosphere from water and soil. The half-life of methylene chloride volatilisation from water has been found to be 21 minutes under experimental conditions but actual volatilisation from natural waters will depend on the rate of mixing, wind speed, temperature, and other factors. The Henry's law constant value (H) of 0.002 atm/m3/mol indicates that methylene chloride will volatilise rapidly from moist soil and water surfaces.

Methylene chloride is not strongly sorbed to soils or sediments Based on its low soil organic carbon partitioning coefficient (Koc) of 25, methylene chloride is likely to be very highly mobile in soils and may be expected to leach from soils into groundwater.

Based on a reported log octanol/water partition coefficient (Kow) of 1.3 an estimated bioconcentration factor (BCF) of 2.3 was derived. There is no evidence of biomagnification, but because the estimated BCF is low, significant biomagnification of methylene chloride in aquatic food chains is not expected.

Air: The main degradation pathway for methylene chloride in air is its reaction with photochemically generated hydroxyl radicals. Thus, the atmospheric lifetime of methylene chloride may be predicted from the hydroxyl radical concentration in air and the rate of reaction. Most reported rates for hydroxyl radical reaction with methylene chloride range from 1.0 x10-13 to 1.5 x10-13 cm3/mol/sec, and estimates of average atmospheric hydroxyl radical concentration range from 2.5 x10+5 to 1x10+6 mol/cm3 Using this information, an average atmospheric lifetime for methylene chloride may be calculated to be 130 days. Because this degradation pathway is relatively slow, methylene chloride may become widely dispersed but is not likely to accumulate in the atmosphere. The small amount of methylene chloride which reaches the stratosphere (about 1%) may undergo direct photolytic degradation; however, photolysis in the troposphere is not expected. Reactions of methylene chloride with ozone or other common atmospheric species (e.g., oxygen atoms, chlorine atoms, and nitrate radicals) are not believed to contribute to its breakdown.

Water: Methylene chloride undergoes slow hydrolysis in water. The experimental half-life reported for the hydrolysis reaction, at neutral conditions, is approximately 18 months at 25 C

However, the rate of reaction varies greatly with changes in temperature and pH. A hydrolytic half-life of 14 days was reported for methylene chloride in acidic solutions at 80-150 C. This experimental value, when extrapolated to 25 C, is about 700 years. Different mechanisms of hydrolyses may be responsible for these two widely different values. Both aerobic and anaerobic biodegradation may be an important fate process for methylene chloride in water. Methylene chloride has been observed to undergo degradation at a rapid rate under aerobic conditions. Reported total methylene chloride loss was 100% after 7 days in a static culture flask biodegradability screening test.

Sediment and Soil: The rate of biodegradation was found to be dependent on soil type, substrate concentration, and redox state of the soil. Methylene chloride biodegradation has been reported to occur under both aerobic conditions and anaerobic conditions. The biodegradation of methylene chloride appears to be accelerated by the presence of elevated levels of organic carbon.

Methylene chloride has a low tendency to absorb to soil; therefore, there is a potential for leaching to groundwater. Also, because of the high vapor pressure, volatilisation to air is also a likely fate process from dry soil. Its high Henry s law constant (0.002 atm/m3/mol) indicates that volatilization from moist soil is also likely.

For Propane: Koc 460. log Kow 2.36.

Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapour pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Estimated BCF: 13.1.

Terrestrial Fate: Propane is expected to have moderate mobility in soil. Volatilization from moist soil surfaces is expected to be an important fate process. Volatilization from dry soil surfaces is based vapor pressure. Biodegradation may be an important fate process in soil and sediment.

Aquatic Fate: Propane is expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. Biodegradation may not be an important fate process in water.

Ecotoxicity: The potential for bioconcentration in aquatic organisms is low.

Atmospheric Fate: Propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemically-

Version No: **3.3** Page **17** of **20** Issue Date: **27/10/2022**

TensorGrip FS600 Canister Spray Adhesive

Print Date: 05/09/2023

produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days and is not expected to be susceptible to direct photolysis by sunlight. **DO NOT** discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
methylene chloride	LOW (Half-life = 56 days)	HIGH (Half-life = 191 days)
water	LOW	LOW
p-tert-butylphenol	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
methylene chloride	LOW (BCF = 40)
p-tert-butylphenol	LOW (BCF = 240)

Mobility in soil

Ingredient	Mobility
methylene chloride	LOW (KOC = 23.74)
p-tert-butylphenol	LOW (KOC = 1912)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Product / Packaging disposal
- Where in doubt contact the responsible authority.Evaporate or incinerate residue at an approved site.
- Return empty containers to supplier.
- ▶ Ensure damaged or non-returnable cylinders are gas-free before disposal.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	2WE

Land transport (ADG)

UN number or ID number	3504		
UN proper shipping name	CHEMICAL UNDER PR	CHEMICAL UNDER PRESSURE, FLAMMABLE, TOXIC, N.O.S. (contains methylene chloride)	
Transport hazard class(es)	Class 2.1 Subsidiary risk 6.1		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions 274 362 Limited quantity 0		

Air transport (ICAO-IATA / DGR)

UN number	3504	
UN proper shipping name	Chemical under pressure, flammable, toxic, n.o.s. * (contains methylene chloride)	
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subsidiary Hazard ERG Code	2.1 6.1 10P
Packing group	Not Applicable	
Environmental hazard	Not Applicable	

Version No: 3.3 Page 18 of 20 Issue Date: 27/10/2022
Print Date: 05/09/2023

TensorGrip FS600 Canister Spray Adhesive

	Special provisions	A1 A187
	Cargo Only Packing Instructions	218
	Cargo Only Maximum Qty / Pack	75 kg
Special precautions for user	Passenger and Cargo Packing Instructions	Forbidden
	Passenger and Cargo Maximum Qty / Pack	Forbidden
	Passenger and Cargo Limited Quantity Packing Instructions	Forbidden
	Passenger and Cargo Limited Maximum Qty / Pack	Forbidden

Sea transport (IMDG-Code / GGVSee)

UN number	3504	
UN proper shipping name	CHEMICAL UNDER PRESSURE, FLAMMABLE, TOXIC, N.O.S. (contains methylene chloride)	
Transport hazard class(es)	IMDG Class 2.1 IMDG Subrisk 6.1	
Packing group	Not Applicable	
Environmental hazard	Not Applicable	
Special precautions for user	EMS Number F-D, S-U Special provisions 274 362 Limited Quantities 0	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
methylene chloride	Not Available
water	Not Available
magnesium oxide	Not Available
p-tert-butylphenol	Not Available
LPG (liquefied petroleum gas)	Not Available

Transport in bulk in accordance with the IGC Code

•	
Product name	Ship Type
methylene chloride	Not Available
water	Not Available
magnesium oxide	Not Available
p-tert-butylphenol	Not Available
LPG (liquefied petroleum gas)	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

carery, reason and corrections regulations, regionalism specime is an out	
methylene chloride is found on the following regulatory lists	
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	Chemical Footprint Project - Chemicals of High Concern List
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs
Australian Inventory of Industrial Chemicals (AIIC)	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2A: Probably carcinogenic to humans
water is found on the following regulatory lists	
Australian Inventory of Industrial Chemicals (AIIC)	
magnesium oxide is found on the following regulatory lists	
Australian Inventory of Industrial Chemicals (AIIC)	International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)
p-tert-butylphenol is found on the following regulatory lists	
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	International WHO List of Proposed Occupational Exposure Limit (OEL) Values for
Australian Inventory of Industrial Chemicals (AIIC)	Manufactured Nanomaterials (MNMS)
LPG (liquefied petroleum gas) is found on the following regulatory lists	
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	Chemical Footprint Project - Chemicals of High Concern List
Australian Inventory of Industrial Chemicals (AIIC)	

National Inventory Status

Version No: **3.3** Page **19** of **20** Issue Date: **27/10/2022**

TensorGrip FS600 Canister Spray Adhesive

Print Date: 05/09/2023

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (methylene chloride; water; magnesium oxide; p-tert-butylphenol; LPG (liquefied petroleum gas))
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	27/10/2022
Initial Date	18/05/2022

SDS Version Summary

Version	Date of Update	Sections Updated
2.3	26/10/2022	Toxicological information - Acute Health (eye), Toxicological information - Acute Health (inhaled), Toxicological information - Acute Health (skin), Toxicological information - Acute Health (swallowed), Toxicological information - Chronic Health, Hazards identification - Classification, Disposal considerations - Disposal, Exposure controls / personal protection - Exposure Standard, Firefighting measures - Fire Fighter (extinguishing media), Firefighting measures - Fire Fighter (fire/explosion hazard), Firefighting measures - Fire Fighter (fire fighting), First Aid measures - First Aid (eye), First Aid measures - First Aid (inhaled), First Aid measures - First Aid (swallowed), Handling and storage - Handling Procedure, Composition / information on ingredients - Ingredients, Stability and reactivity - Instability Condition, Exposure controls / personal protection (Other), Exposure controls / personal Protection (Respirator), Exposure controls / personal protection - Personal Protection (eye), Exposure controls / personal protection - Personal Protection (hands/feet), Accidental release measures - Spills (mijor), Accidental release measures - Spills (minor), Handling and storage - Storage (storage incompatibility), Handling and storage - Storage (suitable container), Transport information - Transport

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC - TWA: Permissible Concentration-Time Weighted Average

PC - STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit₀

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory

Version No: 3.3 Issue Date: 27/10/2022 Page **20** of **20**

TensorGrip FS600 Canister Spray Adhesive

Print Date: 05/09/2023

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory
FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.